Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Transcranial alternating current stimulation (tACS) is a non-invasive neuromodulatory tool that is thought to entrain intrinsic neural oscillations by supplying low electric currents over the scalp. Recent work has demonstrated the efficacy of theta-gamma phase-amplitude coupled tACS over primary motor cortex to enhance motor skill acquisition and motor recovery after stroke. Here, we wished to assess the efficacy of tACS delivered with 75-Hz gamma coupled to the peak of a 6-Hz theta envelope (theta-gamma peak; TGP) at an intensity of 2 mA peak-to-peak to enhance sensorimotor learning during speech production. Sensorimotor learning was measured by shifting the formant frequency of vowels in real-time as speech is produced and measuring the adaptation to this altered feedback. The study was a between-subjects, single-blind, sham-controlled design. We hypothesised that participants who performed the speech task while receiving TGP tACS over the speech motor cortex (N = 30) would show greater adaptation to altered auditory feedback than those receiving sham stimulation (N = 31). Contrary to this hypothesis, there was no effect of TGP tACS on adaption to the upwards F1 shift in auditory feedback in either the final 30 trials of the learning phase or in the first 15 trials of the after-effect phase. However, a trend emerged in the TGP tACS group for greater retention of the adapted state and slower return to baseline F1 values in the after-effect phase. This finding was not predicted, and highlights the need for further investigation to deepen our understanding of the effects of TGP tACS on speech motor learning.

Original publication

DOI

10.1162/nol.a.22

Type

Journal article

Journal

Neurobiology of Language

Publisher

MIT Press

Publication Date

17/07/2025

Pages

1 - 39