Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Network analysis of whole-brain connectome data is widely employed to examine systematic changes in connections among brain areas caused by clinical and experimental conditions. In these analyses, the connectome data, represented as a matrix, are treated as outcomes, while the subject conditions serve as predictors. The objective of network analysis is to identify connectome subnetworks whose edges are associated with the predictors. Data-driven network analysis is a powerful approach that automatically organizes individual predictor-related connections (edges) into subnetworks, rather than relying on pre-specified subnetworks, thereby enabling network-level inference. However, power calculation for data-driven network analysis presents a challenge due to the data-driven nature of subnetwork identification, where nodes, edges, and model parameters cannot be pre-specified before the analysis. Additionally, data-driven network analysis involves multivariate edge variables and may entail multiple subnetworks, necessitating the correction for multiple testing (e.g., family-wise error rate (FWER) control). To address this issue, we developed BNPower, a user-friendly power calculation tool for data-driven network analysis. BNPower utilizes simulation analysis, taking into account the complexity of the data-driven network analysis model. We have implemented efficient computational strategies to facilitate data-driven network analysis, including subnetwork extraction and permutation tests for controlling FWER, while maintaining low computational costs. The toolkit, which includes a graphical user interface and source codes, is publicly available at the following GitHub repository: https://github.com/bichuan0419/brain_connectome_power_tool

Original publication

DOI

10.1162/imag_a_00099

Type

Journal article

Journal

Imaging Neuroscience

Publication Date

28/02/2024

Volume

2

Pages

1 - 13