Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mapping how neurons are structurally wired into whole-brain networks can be challenging, particularly in larger brains where 3D microscopy is not available. Multi-modal datasets combining MRI and microscopy provide a solution, where high resolution but 2D microscopy can be complemented by whole-brain but lowresolution MRI. However, there lacks unified approaches to integrate and jointly analyse these multi-modal data in an insightful way. To address this gap, we introduce a data-fusion method for hybrid MRI-microscopy fibre orientation and connectome reconstruction. Specifically, we complement precise "in-plane" orientations from microscopy with "through-plane" information from MRI to construct 3D hybrid fibre orientations at resolutions far exceeding that of MRI whilst preserving microscopy's myelin specificity, resulting in superior fibre tracking. Our method is openly available, can be deployed on standard 2D microscopy, including different microscopy contrasts, and is species agnostic, facilitating neuroanatomical investigation in both animal models and human brains.

Original publication

DOI

10.1016/j.media.2025.103498

Type

Journal

Med Image Anal

Publication Date

06/02/2025

Volume

102

Keywords

Brain connectivity, Diffusion MRI, Microscopy, Tractography, White matter fibre