Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Given the relationship between hippocampal atrophy and cognitive impairment in various pathological conditions, hippocampus segmentation from MRI is an important task in neuroimaging. Manual segmentation, though considered the gold standard, is time-consuming and error-prone, leading to the development of numerous automatic segmentation methods. However, no study has yet independently compared the performance of traditional, deep learning-based and hippocampal subfield segmentation methods within a single investigation. We evaluated 10 automatic hippocampal segmentation methods (FreeSurfer, SynthSeg, FastSurfer, FIRST, e2dhipseg, Hippmapper, Hippodeep, FreeSurfer-Subfields, HippUnfold and HSF) across 3 datasets with manually segmented hippocampus labels. Performance metrics included overlap with manual labels, correlations between manual and automatic volumes, volume similarity, diagnostic group differentiation and systematically located false positives and negatives. Most methods, especially deep learning-based ones that were trained on manual labels, performed well on public datasets but showed more error and variability on clinical data. Many methods tended to over-segment, particularly at the anterior hippocampus border, but were able to distinguish between healthy controls, MCI, and dementia patients based on hippocampal volume. Our findings highlight the challenges in hippocampal segmentation from MRI and the need for more publicly accessible datasets with manual labels across diverse ages and pathological conditions.

Original publication

DOI

10.1002/hbm.70200

Type

Journal

Hum Brain Mapp

Publication Date

01/04/2025

Volume

46

Keywords

MRI, hippocampus, neuroimaging, segmentation, Humans, Hippocampus, Deep Learning, Magnetic Resonance Imaging, Aged, Male, Female, Cognitive Dysfunction, Middle Aged, Neuroimaging, Aged, 80 and over, Image Processing, Computer-Assisted